
0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907909, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

1

Enhancing Network-on-Chip Performance by
Reusing Trace Buffers

Neetu Jindal, Shubhani Gupta, Divya Praneetha Ravipati, Preeti Ranjan Panda, Smruti R. Sarangi

Department of Computer Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
E-mail: {neetu, shubhani, divyapraneetha, panda, srsarangi}@cse.iitd.ac.in

Abstract—Ensuring the functional correctness of Networks-on-
Chip (NoC) can be particularly challenging, and communication-
centric debug methodologies have been widely used by engineers
to validate NoC functionality during post-silicon validation.
Design-for-Debug structures such as trace buffers and monitors
are usually inserted in such Systems-on-Chip to enhance signal
visibility. However, this debug hardware becomes underutilized
once the chip goes into production. While the size and organi-
zation of the router buffers directly impact network throughput,
these buffers also dominate the on-chip router area. We propose a
scheme AugVC to reuse trace buffers to augment router buffers,
with the objective of improving the overall network performance.
Experimental results for a 64-node mesh network show that our
proposed approach can reduce latency by up to 38.25% for
transpose traffic compared to a baseline design with reduced
buffer sizes. We also propose an extension, Output Port directed
Virtual Channel (ODVC), that uses a modified virtual channel
assignment strategy, on the basis of the designated output port
of a network packet. This strategy reduces the average packet
latency and area of the router by 45% and 32.4%, respectively.

Index Terms—Network-on-chip (NoC), Design-for-debug, post-
silicon validation, trace buffer, virtual channels.

I. INTRODUCTION

System-on-chip (SoC) complexity has increased signifi-
cantly in terms of both the processor core count as well as
the communication among these cores, which makes debug-
ging these systems very challenging. A post-silicon valida-
tion phase is usually necessary for ensuring proper system
validation. In addition to the traditional focus on component
functionality, validation researchers have recently focused on
a communication-centric debug methodology to ensure the
correctness of on-chip networks. A large part of debug com-
plexity lies in validating the interaction between the system
components.

Debugging during post-silicon validation is aided by
Design-for-Debug (DFD) hardware which provides visibility
into the chip by recording its state. This includes monitors and
trace buffers. Monitors are programmed to observe whether
the system satisfies various specified conditions [1] and trace
buffers are the memory elements that record the router state
periodically. This state consists of the flits stored in the
router buffers, intended for forwarding to other routers. Router
buffers are First-In, First-Out structures that temporarily store
the packets that cannot be immediately forwarded due to
contention. A flit is a fixed-size unit, one or more of which
constitute a packet [2]. There is a tradeoff involved in de-
signing the DFD hardware; increasing this hardware provides

higher visibility during debug, but the increased area goes
largely unutilized during normal system functioning.

A router buffer can be organized either as a single queue
as in a wormhole router, or further divided into multiple inde-
pendent queues called virtual channels (VCs) to avoid head-of-
line blocking as in a virtual channel router [3]. These buffers
have a significant impact on the network throughput, especially
when the network becomes congested. Increasing the buffer
size reduces the packet drop probability [4]; however, it also
increases the on-chip router area [5], [6] and power [7], [8].
Consequently, the buffer design plays an important role in
architecting low cost, high performance, and energy efficient
on-chip networks.

We propose to leverage the presence of a trace buffer within
the router to effectively increase the capacity of the router
buffers present at each port. The trace buffer is reused to
augment the router buffers, with the objective of improving
the overall network performance. Since this buffer already
exists in the hardware, our proposed reuse incurs minimal area
overhead. The scenario is illustrated in Figure 1. Figure 1a
shows the trace buffer being used to store debug data during
the post-silicon validation phase [9] and Figure 1b shows
the normal operation where the design-for-debug hardware is
power-gated. In Figure 1c the trace buffer is re-used to aid
the normal system operation in-field. Here, the trace buffer
is used as a backup storage; it stores the flits that cannot be
accommodated in the private buffers present at the input ports.

Our main contribution is to demonstrate that such a reuse
improves network performance with reduced area, through
using smaller VC buffers, with the trace buffer serving as
backup storage for flits. We also propose an extension, called
Output port Directed Virtual Channel (ODVC), that uses a
modified VC assignment where the VCs are assigned on
the basis of the designated output port of the packet. The
cardinality of the arbiters used in the switch allocation and
VC allocation stage of the pipeline affects the clock period of
the router. Our proposed design reduces the cardinality of the
different arbiters, and thus, reduces the clock period and area
of the router by 30% and 32.4% respectively.

This paper is organized as follows. In Section II we sum-
marize the background on the conventional router architecture.
In Section III we review the related work on both validation
hardware and management of on-chip router buffers. In Sec-
tion IV we present our proposed router architecture with all
the components in detail. We discuss the experimental results

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907909, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

RRR

R

W E

S

N

Local
Core

NI

Local
Core

NI

Local
Core

NI

Local
Core

NI

R

Local
Core

NI

L

Trace Buffer
(TB)

Control
Logic

Trace buffer
Controller

Flit

Flit

FlitB
uffer

Flit

Buffer

B
uff

er

Buffer

Buffer

Flit

R : Router
NI : Network Interface

N : North
S : South
W : West
E : East
L : Local

(a) During Debug

Trace Buffer
(TB)

Control
Logic

Flit

Flit

FlitB
uffer

Flit

Buffer

B
uff

er

Buffer

Buffer

Flit

Trace buffer
Controller

(b) During Operation

Trace Buffer
(TB)

Control
Logic

Flit

Flit

FlitB
uffer

Flit

Buffer

B
uff

er

Buffer

Buffer

Flit

Trace buffer
Controller

(c) During Operation (proposed)

Fig. 1: Trace Buffer reused to augment router buffers.

in Section V. Finally, we conclude the paper in Section VI.

II. BACKGROUD: CONVENTIONAL ROUTER
ARCHITECTURE

We first review the conventional on-chip router architec-
tures. Figure 2 depicts the input queued VC router architecture
in a mesh topology, with five ports corresponding to the four
directions (North, South, West, and East) and the local core.
The router is implemented as a four-stage pipeline:

1) Look ahead routing and VC allocation
2) Switch arbitration
3) Switch traversal
4) Link traversal

Each port has an input buffer consisting of multiple inde-
pendent queues called virtual channels (VCs) that operate
in parallel. All flits of a packet occupy the same VC. This
allows the traversal of flits from multiple packets in an
interleaved manner over a single physical channel as the VCs
are assigned on a per-packet basis. When a header flit arrives
at a router, it is first buffered in the VC’s buffer based on the
VC identifier, following which the routing computation unit
finds the output port based on the routing algorithm and the
destination information present in the header flit. To eliminate
the delay associated with the route computation from the

router’s critical path, Look Ahead Routing (LAR) is used [10],
where the current router determines the output port that the
next router will forward a flit to. For each header flit, the VC
allocation unit attempts to allocate an output VC (this refers
to the input VC in the downstream router). The VC allocation
unit performs arbitration among all the flits requesting the
same output VC. Non-availability of an output VC for a header
flit causes VC allocation to be re-tried in the next cycle. LAR
and VC allocation are performed in parallel. If a flit secures
a free VC, it proceeds to the Switch Arbitration (SA) unit.
The SA unit then determines which flits are to be forwarded
to their corresponding output ports. SA is performed in two
stages: the first stage selects one of v VCs at each input port,
requiring a total of p arbiters of cardinality v : 1. The second
stage arbitrates between the winning requests of the first stage
to decide who wins each output port. Therefore, a total of p
arbiters of cardinality (p − 1) : 1 are required. The flit then
traverses the switch to reach the output port in switch traversal
stage. It then traverses the link in the Link traversal stage to
reach the downstream router. LAR and VC allocation are done
only for the header flits, whereas switch allocation is done on
a per-flit basis. Once the tail flit leaves the router, it deallocates
the VC reserved for the packet. Each pipeline stage takes one
cycle to execute. This organization uses a static partitioning

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907909, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

N input port
vc 1

vc v

flit in

vc identifier

credit out

L input port
vc 1

vc v

flit in

vc identifier

credit out

Switch arbitration

2-Stage arbitration

Switch traversal

Look ahead routing
VC allocation

Stage 1

Stage 2

Stage 3 output ports

S

Stage 4

input port of
downstream

router

N

S

W

E

L

Link traversal

N

L

p-1:1
arbiter

p-1:1
arbiter

W

S

v :1
arbiter

v :1
arbiter

v :1
arbiter

v :1
arbiter

Fig. 2: Conventional Router Architecture.

of buffer resources where each input port has a fixed number
of VCs, each with a fixed flit count.

Since NoC applications cannot tolerate dropping of packets,
a credit based flow control mechanism is used. Flits are
forwarded only if the next-hop router has buffers available
at its corresponding input port. Each router knows the number
of unassigned VCs in each of its downstream routers, as
well as the number of available slots in the assigned VCs.
While allocating a VC for a head flit, the router looks for an
unassigned VC in the downstream router. When forwarding
a body or tail flit, the router looks for a free slot in the
corresponding private VC. Whenever a flit leaves a router,
the upstream routers are requested to update their credit
knowledge accordingly.

III. RELATED WORK

Post-silicon validation has received considerable research at-
tention in recent times. Techniques have been proposed for ef-
ficient validation of processors and logic [11], [12]. Goossens
et al. [13] propose a communication centric debug architecture
that uses structural and temporal abstraction techniques to
visualize the SoC’s state at a logical communication level.
Monitors are used for performance analysis and validation
of data flow errors of network operations [1] and observing
traffic events [14], [15]. These events and transactions are then
transferred over the network for further analysis. Gharehbaghi
and Fujita [16] proposed an approach to monitor the bus
in which the transactions are stored in a trace buffer. The
trace buffer content is analyzed offline for anomalous patterns,
which requires the validation engineer to identify anomalous
transaction traces and perform backtracking from the observed
failure state. A transaction based online debug approach is
proposed by Dehbashi and Fey [17]. Ghofrani et al. [18]
also propose a solution for online detection and diagnosis
of permanent faults in NoCs. This approach uses an error

syndrome collection mechanism to localize datapath faults and
timeout based techniques to localize the fault in control logic.

Debugging techniques that target functional errors such as
deadlock, livelock, and starvation errors by taking snapshots of
packets traversing a router to reconstruct the packet path, have
been studied by Abdel-Khalek and Bertacco [19]. Additional
validation hardware consisting of small buffers used to store
a copy of header flits and snapshot buffers are added at every
port of the router. A transaction buffer of size 32 × 128
is used inside the debug probe by the NoC-based multicore
debug platform reported by Tang et al. [9]. A run-time
solution REPAIR [20] has also been proposed to recover from
functional design errors using retransmission based techniques.
DiAMOND [21] focuses on the validation of functional bugs
in the control flow portion of the NoC designs. It uses in-flight
packets to log debugging data by replacing the data contents of
a packet with debugging data. Hardware checkers are added to
the routers to monitor the execution and flag functional bugs.

Efficient management of on-chip router buffers is another
related research area. Buffers are instrumental in the overall
operation of on-chip networks. Kumar et al. [4] discuss the
variation of packet drop probability with buffer size. Increasing
the buffer size reduces the drop probability; however, the area
occupied by an on-chip router is dominated by these buffers.
Reducing the size of these buffers is generally not feasible
because it directly affects the packet latency.

The VC organization impacts overall system performance.
Rezazad et al. [22] evaluate the trade-off between the number
and depth of the VCs for a fixed size buffer. A small number of
VCs are sufficient for low intensity traffic; however, increasing
the number of VCs is more effective for high intensity traffic
rather than increasing the buffer depth. Huang [23] customizes
the VCs according to the bandwidth utilization of each port
in a static approach based on the detailed analysis of the
application-specific traffic patterns. Bufferless routing meth-

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907909, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

ods [24]–[26] remove buffers from the router to save area and
power; however, they result in larger latencies when the packet
injection rate is high.

The size of VC queues could be controlled either statically
or dynamically. Static queues are easier to implement, whereas
dynamic queues significantly improve buffer utilization at the
cost of increased complexity of the related control logic.
Various dynamic VC management techniques [2], [27], [28]
have been proposed in recent times. They unify the buffer
resources into a common pool and allocate to different VCs
at run-time. The ViChar design [27] dynamically varies the
number and size of VCs depending on traffic conditions. It
maintains similar packet latencies even with half the buffer
size, but requires an arbiter count equal to the buffer size in
both VC allocation and switch allocation stages, which incurs
a significant area overhead. The RoShaQ design [29] uses
shared queues between all the ports instead of a fixed number
of queues on individual ports. Xu et al. [2] improve over
ViChar design by using a VC allocation mechanism where
VCs are assigned on the basis of a designated output port. It
maintains a correspondence between the output port requested
on the downstream router and the output VC assigned in the
current router. However, it is a priority based scheme, and a
fixed mapping between an output port and a VC is not feasible
in this design. The number of VCs allocated to the output
port depends on the traffic condition. In our work, we use a
fixed mapping by associating each queue at the input port to a
single output port, which enables us to reduce the cardinality
of arbiters, resulting in a smaller area and clock period. We
have considered the mesh topology in our design; however,
reuse opportunities do exist for other topologies such as the
ring used in NuMachine multiprocessor [30], where the trace
buffer can be used at the inter-ring interface to facilitate the
communication between the local and central rings. Similarly,
the trace buffer can also be reused to reduce the size of
extension buffers in routerless NoC architectures [31].

The virtual output queuing (VOQ) technique [32] also uses
a fixed mapping of each VC to a single output port. However,
it requires a sophisticated switch allocation algorithm such as
ApSLIP [33] or maximum weight matching to support high
network throughput, resulting in significant power, area, and
clock cycle time overheads. This makes it hard to use in
NoCs [34], but it is commonly used for off-chip networks [35]
which do not need flow control, can drop packets upon
congestion, and are not sensitive to the clock period. VOQ
organization is more suitable for a topology with good load
balancing characteristics such as clos NoC [36]. Our proposed
technique uses a simple round-robin switch allocation, and
still achieves the benefits of VOQ routers. The key difference
that enables this with a much smaller area overhead is the
reuse of the trace buffer for backup storage, which reduces
the input buffer sizes. Queue lengths in case of non-uniform
traffic are not a matter of concern in our design, as the trace
buffer stores the flits if the corresponding port's queue is full.
Zhang et al. [28] also proposed a buffer sharing mechanism
where a shared buffer is present on every port, with a small
prefetch buffer for every VC to reduce the delay in reading
data from the shared buffer. This approach cannot be used in

a trace buffer scenario as a single trace buffer unit is available
for all the ports.

Recent works by Basak et al. [37] and Jindal et al. [38], [39]
have also identified the advantages of reusing DFD hardware
in-field, and proposed the re-purposing of these structures.
Basak et al. [37] exploit the DFD structures to implement
customized security wrappers that enable on-field update of
security requirements, while being transaparent to debug use
cases. Jindal et al. [38], [39] proposed a non-standard victim
cache design which reuses the storage area of the trace buffer
to enhance in-field performance.

IV. TRACE BUFFER AUGMENTED ROUTER ARCHITECTURE

We propose to integrate the Trace Buffer, a Design-for-
Debug structure already present in the router, into the router
architecture, which enables the reclamation and reuse of its
storage space for functional purposes. Since all the input
ports may not receive packets at the same time, many VCs
may go un-utilized even if a demand for VCs exists. We
propose to reuse the trace buffer as augmented VC buffers
(AugVC). This reuse of the DFD infrastructure reduces the
NoC’s packet latencies, while also permitting a reduction in
the area occupied by the input buffers. In this section we
first discuss our proposed router architecture design AugVC.
Following this, we discuss an extension in which we use an
output port directed VC allocation scheme to reduce the clock
period and router area.

A. AugVC Router Architecture

In the AugVC design, we propose to reduce the width of
the private VCs present at each port and use the trace buffer
as a backup storage. To support this new functionality, a new
controller is added. The controller first checks the availability
of private VCs for an incoming flit and if no space is available
in the private VCs, it accommodates those flits in the trace
buffer. Similarly, for an outgoing flit, it checks whether a flit
of the same packet is present in the trace buffer, in which
case, it migrates the flit from the trace buffer to the private
VC. Each port can receive a maximum of 1 flit per cycle. Now,
a trace buffer of width w flits only serves as a backup storage
for w ports because a trace buffer of width w flits allows a
maximum of w flits to be written to the trace buffer per cycle.
Let the number of ports be m and the width of the trace buffer
be w flits, there are two possible scenarios:

1) m ≤ w: In this case, the trace buffer can be used as a
backup storage for all the m ports, which further allows
to reduce the size of all the private VCs.

2) m > w: This scenario is elaborated further. Here, the
trace buffer can only be used for w ports and the
remaining m−w ports need to use the larger VC sizes
to maintain NoC performance.

Figure 3 illustrates the proposed Augmented Virtual Chan-
nel (AugVC) router architecture. The additional components
required to support the new functionality are highlighted in
blue. For illustration, we consider a router architecture with
five input and output ports (North, South, West, East and
Local), a flit size of 32 bits [29], and a trace buffer of width

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907909, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

NPort
EPort

NPort

EPort

LPort

WriteHB ReadHB

(if
full)

ReqQueue

flit0 flit3flit2flit1

Trace
Buffer

Trace
Buffer

Controller

flit in NPort

Next Address
Table

Look ahead Routing
VC allocation

Switch
arbitration

Switch
traversal

flit in EPort
flit in LPort

Stage 1

Stage 2

output ports

S

Stage 4

input port of
downstream

router

N

S

W

E

L

Link traversal

Stage 3

Fig. 3: AugVC Router Architecture

128 bits [9]. The trace buffer can accommodate only four
ports, because a maximum of four flits can be written to the
trace buffer per cycle. This allows us to migrate flits from
a maximum of four ports. We therefore permit the four non-
local ports (N, S, W, E) to utilize the trace buffer and consider
the local port differently. These can be any four ports. For
illustration and evaluation, we have used four non-local ports.
The local port has v VCs, each is of size k flits. The other
four ports (N, S, E, and W) also have v VCs each, each of size
k′ flits, where k′ < k. A relatively small VC size is possible
because of the trace buffer being available for backup storage.

Head
Pointer

line_number index

0,0

0

12

5

12,0

Trace BufferTail
Pointer

5 1

12 0

- -

0 321

Next Address Table

Fig. 4: Linked list of all the flits belonging to the same VC
maintained using Next Address Table

Incoming flits from the local core can occupy only one of
the k private VC slots available at the local port. Incoming flits
that need to be forwarded can occupy the allocated private VC
slots (k′), or may be accommodated in the trace buffer if the
private VC is full.

We also employ a credit-based flow control system. Each
router knows the number of unassigned VCs in each of its
downstream routers, the number of available slots in the
assigned VCs, as well as the number of available lines in the
trace buffer. While allocating a VC for a head flit, the router
looks for an unassigned VC in the downstream router, just as
in the base router architecture. When forwarding a body or tail
flit, the router looks for either a free slot in the corresponding

private VC, or an available line in the trace buffer. Whenever
a flit leaves a router, the upstream routers are requested to
update their credit knowledge accordingly.

When a flit leaves the router, a flit of the same packet is
migrated from the trace buffer (if available) to the newly freed
slot in the private VC. Since the trace buffer is uniformly
shared among all non-local ports, the storage is better utilized
than in the case of completely private VCs as employed by
the baseline router architecture.

Writing to the Trace Buffer: If there is no space to
accommodate an incoming body or tail flit from a non-local
port in the private VC, the Trace Buffer Controller stores the
flit in a temporary area called the Write Holding Buffer (Write
HB). Once the occupancy of the Write HB reaches four, the
flits are written to the trace buffer (since writes to the trace
buffer are done in blocks of 128 bits or 4 flits). This is done
to utilize the trace buffer space efficiently as we may not have
flits from all the ports writing into the trace buffer in the same
cycle. Thus, a line in the trace buffer may possibly contain data
from different VCs of different ports or the same port.

Reading from the Trace Buffer: When a flit exits the
private VC, the trace buffer controller checks whether a flit
corresponding to that VC is present in the trace buffer, and
if so, writes it to the private VC. To search the trace buffer,
the Trace Buffer Controller maintains a linked list of all flits
residing in the trace buffer that belongs to the same VC in an
auxiliary Next Address Table (Figure 4). The same two values
are required to index into the trace buffer and the Next Address
Table: line number and position of the entry within the line.
For each VC, a head pointer (<line number, position> tuple)
and a tail pointer are maintained, which contain the location
of the first and last flits residing in the trace buffer. For a
flit f residing at index if in the trace buffer, the entry at
index if in the Next Address Table gives the index of the flit
following f . The size of Next Address Table is derived from
the number of lines and the width (flits per line) of the trace

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907909, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

LPort

LPort

NPort

EPort

SQ

LQ

EQ

WQ

NQ

WQ

LQ

SQ

SPort

NPort
Arb
3:1

Arb
3:1

NPort
Arb
2:1

WPort

SPort
Arb
2:1

Arb
2:1

EPort
Arb
2:1

LPort

Arb
4:1WriteHB ReadHB

flit0 flit3flit2flit1

Trace
Buffer

if full

ReqQueue

Trace
Buffer

Controller

NPort

EPort

NPort

EPort

Look ahead routing
VC allocation

Switch arbitration

Arb
4:1

Switch traversal

Stage 2

Stage 1

output ports

S

Stage 3

input port of
downstream

router

N

S

W

E

L

Link traversal

Fig. 5: Output Port Directed VC Assignment (ODVC)

buffer. For example, if the number of lines is n and the trace
buffer is w flits wide, then the size of the next address table
is n× ((log2 n+ log2 w)× w) bits. The parameters n and w
are fixed at design time.

If the head pointer is not null, the trace buffer controller adds
a request for the VC in the Request Queue. In one cycle, up to
four requests may be added, one from each input port. In every
cycle, the head of the Request Queue is processed and a line
is read from the trace buffer and placed in a temporary area
called the Read Holding Buffer (Read HB). Further, in every
cycle, the Request Queue is scanned to find all those requests
that the contents of the Read and the Write HB can satisfy. A
flit in the Read HB can be used to satisfy a request only if it
is pointed to by the head pointer corresponding to that VC. A
flit in the Write HB can be used to satisfy a request only if no
flit of that VC is present in the trace buffer. These conditions
are necessary for ensuring that the flits are processed in their
order of arrival.

A significant fraction of the requests is serviced directly
from the Read and Write HBs, reducing the number of trace
buffer reads. This is due to the presence of temporal locality;
flits that arrive together at the router, tend to enter the trace
buffer, and also leave the router together. No changes are made
to VC allocation and switch arbitration stages of the pipeline
in the AugVC design.

B. Output Port Directed VC Assignment (ODVC)

The VC allocation unit and the switch allocation (SA) unit
typically form the bottleneck stages of the router pipeline [27],
affecting the clock period of the router. The latencies of these
two stages depend on the cardinality of the arbiters used in
these stages. During VC allocation, the unit may have to
arbitrate as many as v × p requests in a single cycle, where

v is the number of VCs per port, and p is the number of
ports. This may make the unit reasonably complex, requiring
a relatively large clock period. SA is performed in two stages:
the first stage selects one of v VCs at each input port, requiring
a total of p arbiters of cardinality v : 1. The second stage
arbitrates between the winning requests of the first stage to
decide who wins each output port. Therefore, a total of p
arbiters of cardinality (p − 1) : 1 are required. The two
stages of arbitration require a large clock period, and also
consume a significant fraction of the router area. Our proposed
design reduces the cardinality of the different arbiters, and
thus, reduces the overall clock period and the router area. To
achieve this, an output directed VC allocation scheme is used.

Figure 5 describes the new router architecture. The VCs are
populated on the basis of the intended packet direction, unlike
in the baseline, where the VCs are reserved on a per-packet
basis. For illustration, here also, we have considered 5-port
design (North, South, West, East and Local) and have also
considered the local and the non-local ports separately for the
same reason as in Section IV-A. Flits from the local core are
not accommodated in the trace buffer as the trace buffer is 128
bits (4 flits) wide, and a maximum of 4 flits can be written into
it every cycle. This allows us to migrate flits from a maximum
of four ports. We therefore choose the four non-local ports to
utilize the trace buffer.

Each of the four non-local input ports has four VCs corre-
sponding to the four possible output ports. Illustrating through
an example, the North input port has four VCs: SQ, WQ, EQ,
and LQ. A flit arriving at the North input port, and expected
to leave through the South output port is accommodated in
the SQ of the North port. This is possible because of the look
ahead routing done in the previous router. If a VC in any of the
input ports is found full, the flit is accommodated in the trace
buffer, space permitting. The writing to and reading from the

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907909, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

trace buffer is performed as in Section IV-A. The ordering of
flits within a packet is still maintained. Flits originating from
the local core are allowed to occupy any of the VCs in the
local port, regardless of the intended direction of the flits.

The new architecture described above uses a 3-stage
pipeline. When a flit arrives at an input port, SA and LAR are
first performed in parallel, followed by VC allocation. These
three steps are performed in the same cycle, unlike the base
architecture, where VC allocation is performed in parallel to
LAR, followed by SA in the next cycle. Additionally, in the
base architecture, LAR and VC allocation were performed
only for header flits, while these steps are performed for
all flits in the ODVC architecture (flit-level routing) [40].
Here, every flit needs to contain routing information. This is
necessary, as in ODVC, flits of different packets occupy the
same VC. The overhead of routing information with every flit
is considered in ODVC experiments by increasing the number
of flits in a packet.

SA is performed in two steps (Figure 5). In the first step,
a system of four 3:1 arbiters decides the non-local candidate
flits for the four non-local output ports. Additionally, a 4:1
arbiter decides the local candidate flit destined for one of the
four non-local output ports. In the second step, a system of
four 2:1 arbiters decides the winners for the four non-local
output ports. Additionally, a 4:1 arbiter decides the winner
for the local output port. Thus, ODVC manages to reduce
the cardinality of the required arbiters significantly, resulting
in reduced area and a shorter critical path. Note that a 2-
stage arbitration process is required because of the different
designs of local and non-local ports which, in turn, was the
consequence of the trace buffer width constraint.

We can extend the design to any number of ports. Let the
total number of ports be p and the trace buffer width be w
flits. The trace buffer can be used as a backup storage for
only w ports, which will be referred to as the TB-backed ports.
The other p− w ports that are not backed by the TB will be
referred to as the unbacked ports. There are p− 1 VCs, each
of size k flits, per TB-backed port and v VCs, each of size
k′ flits, per unbacked port, where k < k′. Moreover, the first
stage of switch arbitration requires w arbiters of cardinality
w − 1 : 1 and p− w arbiters of cardinality v : 1. The second
stage of switch arbitration requires w arbiters of cardinality
(p− w + 1) : 1 and p− w arbiters of cardinality p− 1 : 1.

LAR is performed in parallel with SA. VCs are assigned
only for the SA winners. The VC assignment logic is very
simple as the VCs are already mapped to the output ports.
This mapping is possible because of the availability of the trace
buffer that can be shared by all packets alike. The alternative
design without a shared buffer would mean having four output
port-mapped VCs of large widths. However, such a design
fails to efficiently handle commonly occurring scenarios where
heavy traffic arriving at an input port is headed towards a single
direction, leading to under-utilization of the other VCs at the
input port. Priority-based schemes [2] have been proposed, but
these require complex SA mechanisms.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

In this section, we evaluate our proposed design in terms
of overall network performance, area overhead, and power
dissipation. We use a flit-level cycle-accurate NoC simulator
BookSim [41] to conduct a detailed evaluation of different
designs under discussion. We use XY dimension-ordered
routing, although our proposal is independent of the specific
routing algorithm and the topology employed in the system.
The configuration parameters for the proposed and the baseline
network are listed in Table I and Table II, respectively.

We evaluated our design on both synthetic traffic patterns
and Synfull traffic models [42]; these two cover a wide
range of network utilization scenarios and exercise both cache
coherence traffic and memory traffic. The several synthetic
traffic patterns include: (1) uniform, where each node sends an
equal amount of traffic to each destination and (2) Permutation
traffic pattern (transpose, tornado, neighbor), where each node
selects a fixed destination based on the permutations. The
packet size is varied from 5 flits (a header, a tail, and 3 body
flits) to 100 flits, where each flit size is 32 bits [29]. BookSim
is warmed up for 10,000 clock cycles; then the performance
statistics are computed for the next 100,000 cycles at different
injection rates starting at 0.04 flit/node/cycle and incremented
by 0.04 flit/node/cycle until the throughput is reached. As part
of these experiments, we integrated Booksim with Synfull [42]
to model the inherent communication pattern of a cache co-
herent system for multi-threaded applications from SPLASH2
and PARSEC benchmark suite. These workloads consist of
single-flit control packets and multi-flit data packets.

We also implemented our design by extending an open
source NoC router RTL model [43] and synthesized it using
Cadence Encounter RTL compiler with a 90nm standard cell
library, to understand the area, timing, and power implications
of our proposed design. The activity factors for dynamic power
evaluation are obtained from Booksim simulations, and then
fed to Cadence Encounter.

B. Synthetic workloads

1) Impact of AugVC Router on latency: Figures 6a–6d
show the variation in average packet latency with increasing
injection rate for the four different traffic workloads – uni-
form, transpose, tornado, and neighbor, and compare it with
Baseline5. The packet latency is computed as the time elapsed
between the sending of the first flit by source and the receipt of
the last flit by destination. The injection rate is defined as the
number of flits per cycle per node. The figure shows that our
scheme exhibits lower average packet latency at all injection
rates and packet sizes. We observe that the latency reduction
is more for larger packet sizes, which is expected, as these
require deeper VCs. The latency reduction over the Baseline5
NoC for packet size 100 and injection rate 0.24 is 18.16% for
uniform traffic, 6.1% for tornado traffic, 18.4% for neighbor
traffic, and 38.25% for transpose traffic (injection rate = 0.14).

Figure 7 shows the average packet latency for different trace
buffer sizes by varying the number of lines from 6 to 32
under uniform traffic (packet size 100). The two dashed lines

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907909, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Parameter AugVC ODVC
Topology (Mesh) 4× 4, 8× 8, 16× 16 4× 4, 8× 8, 16× 16
Routing algorithm X-Y dimension order X-Y dimension order

#Virtual channel per port 8 4
#Flits per VC 3 (non-local ports), 8 (local port) 4 (non-local ports), 8 (local port)
Flit size (bits) 32 32

Trace buffer width 128 bits (4 flits) 128 bits (4 flits)
#Lines in trace buffer 32 32
Write holding buffer 4 flits 4flits
Read holding buffer 4 flits 7 flits
Request queue size 12 entries 12 entries

TABLE I: Proposed network configuration parameters

(a) Uniform Traffic (b) Transpose Traffic

(c) Tornado Traffic (d) Neighbor Traffic

Fig. 6: Average packet latency under four synthetic traffics for different packet sizes (5, 10, 20, 30, 50, 100 flits). Dashed lines
and solid lines represent Baseline5 and AugVC, respectively.

Topology (Mesh) 4× 4, 8× 8, 16× 16
#Virtual Channels (per port) 8

#Flits per VC 5 in Baseline5
8 in Baseline8

Flit size 32 bits
Packet size 5 flits to 100 flits

Routing algorithm X-Y dimension order

TABLE II: Baseline configuration parameters

represent the baseline architecture Baseline5 and Baseline8.
We observe that AugVC performs better than Baseline5 at
almost all the trace buffer sizes and injection rates, even those

as small as 8 lines. A trace buffer with 6 lines performs well
for smaller injection rates. This is significant considering that
the DFD structure would have gone unutilized without this
reuse. Although AugVC (with a trace buffer of 32 lines) and
Baseline8 achieve similar packet latencies, the area require-
ment of our scheme is 7% lower (Section V-D). Similar trends
were observed for other synthetic traffics and the results for
Baseline8 were omitted from Figure 6 for clarity.

2) Impact of ODVC Router on latency: ODVC reduces the
cycle time by 30%, and therefore, allows the router to operate
at a higher frequency. This design also reduces the number
of pipeline stages by 1, thereby reducing the overall latency

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907909, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Fig. 7: Impact of different trace buffer sizes on average packet
latency under uniform traffic (packet size = 100 flits)

as well. In the ODVC design, every flit needs to carry the
destination address (flit-level routing), unlike Baseline5 and
AugVC, where only the header flit carries the destination
address. To make a fair comparison, we have increased the
number of flits in a packet in the ODVC design. Since the
destination address is 6 bits wide for a 8×8 2-D mesh network,
we have added 1 flit for every 5 flits. Thereby, the packets with
sizes {5, 10, 20, 30, 50 and 100} are changed to {6, 12, 24,
36, 60 and 120} in the ODVC design.

Figure 8a–8d show the variation of the normalized average
packet latency of Baseline5, AugVC, and ODVC design,
with increasing injection rate for the four synthetic traffic
workloads. The latencies are normalized with respect to
Baseline5. The figure shows that ODVC exhibits minimum
average latency for uniform, neighbor, and transpose traffic
for different packet sizes; it saturates (at a latency threshold
of 1500 cycles) early for higher injection rates for tornado
traffic because of the highly imbalanced nature of the traffic.
ODVC maps one VC to each possible outgoing direction.
The Tornado traffic pattern uses only one private VC of the
port to forward most of the packets, resulting in packets
accumulating in the trace buffer at higher injection rates. At
lower injection rates, packets are present in a mixed format,
leading to better overall progress. This is also the reason for
better improvements with smaller packet sizes as compared to
larger packet sizes. A larger packet covers most of the private
VC space and other packets are accommodated in the trace
buffer, which increases the latency of the packet present in
the trace buffer. We also observe some erratic behavior at the
extreme point corresponding to saturation (saturation points
for different traffics are reported in Table III).

In Figure 9, the ODVC design is compared with the VOQ
technique [32], which also uses a fixed 1-1 mapping of VCs to
output ports. The figure shows the variation of the normalized
average packet latency of VOQ for five different VC sizes (4,
5, 6, 7, and 8 flits per VC), with increasing injection rates
under four synthetic traffic workloads. The VC size in ODVC
is fixed at 4 flits. ODVC exhibits the lowest average packet
latency for all the traffic patterns, primarily because of the
backup storage shared between all the VCs. Also, the VOQ
design saturates early for smaller VC sizes. In comparison,
ODVC gives better latency reduction and throughput with

Traffic Baseline5 Baseline8 AugVC ODVC
uniform 0.28 0.28 0.29 0.25

transpose 0.14 0.14 0.14 0.14
tornado 0.25 0.25 0.25 0.14

neighbor 0.77 0.77 0.81 0.51

TABLE III: Maximum injection rate of source processor with
latency threshold and packet size of 1500 cycles and 100 flits,
respectively.

smaller VCs.
We also compared ODVC with the proposal by Xu et al. [2],

and observed similar latencies in terms of cycles. However,
our approach reduces the clock period by 22% because of the
reduction in the arbiter’s cardinality.

Table III shows the maximum injection rate supported
by different designs over different synthetic traffics while
considering the latency threshold of 1500 cycles. We observe a
slightly better saturation throughput for AugVC design com-
pared to Baseline5 and Baseline8 for uniform and neighbor
traffic, primarily because of a reduction in the average packet
latency in AugVC. For transpose traffic, all the routers of the
same row send flits to the same output direction and therefore,
are limited by the output port of the last router on that row; all
the designs exhibited the same saturation throughput of 0.14.
We observe higher latencies with increasing injection rate for
ODVC design, primarily because of packet accumulation in
the trace buffer. AugVC design improves performance to a
greater extent than the ODVC design. However, it has a higher
associated area overhead, leading to an area-performance
trade-off between the two techniques.

C. PARSEC and SPLASH2 Benchmarks

We study the performance impact under 16 PARSEC and
SPLASH2 benchmarks for three NoC sizes 4× 4, 8× 8, and
16 × 16 (Figure 13). We do not observe much reduction in
latency by increasing the VC width from 5 to 8 flits because
of the smaller packet sizes. Therefore, AugVC also does not
provide a significant latency reduction. AugVC was evaluated
with different trace buffer sizes (6 to 32 lines), yielding similar
results. However, ODVC reduces the latency significantly for
all the benchmarks because of the aforementioned reduction
in both the cycle time and the number of pipeline stages.

We also observed the impact of varying trace buffer access
latencies in our experiments as it may not be always possible
to obtain a single-cycle access to the trace buffer. The results
in Figure 11 exhibit a significant reduction in packet latency
even with higher trace buffer access latencies; this can be
further improved by increasing the size of the Read HB
(Section IV-A). Read HB sizes of 7 and 10 flits with latencies
of 2 and 3 cycles, respectively, provide similar results to the
single cycle latency designs.

Figure 12 shows the maximum, minimum, and variance
values of packet latency for different benchmarks. The results
are normalised to Baseline5. The minimum latency is the
same in all of the 3 designs because the number of pipeline
stages are the same. For maximum and variance in latencies,

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907909, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

(a) Uniform Traffic (b) Transpose Traffic

(c) Tornado Traffic (d) Neighbor Traffic

Fig. 8: Impact of AugVC (Dashed lines) and ODVC (solid lines) design on average packet latency (normalized to Baseline5)

Design Area Static Power
Buffer (VCs) TB, TBCtlr Others

Baseline5 1 1 1 1
Baseline8 1.152 1.38 1 1.05
AugVC 1.082 0.72 1.90 0.99
ODVC 0.676 0.46 1.67 0.36

TABLE IV: Synthesis results normalized to Baseline5

we observed mixed results. AugVC manages to reduce the
maximum latency and variance in latencies for cholesky and
swaptions benchmarks; however, high values are observed for
raytrace. This is primarily determined by how the flits are
stored and accessed from the trace buffer.

D. Synthesis Results

The area and static power overheads for different designs
are summarized in Table IV. The results are normalized to
Baseline5. We observe an area overhead of 8.2% for AugVC
compared to Baseline5, mainly because of the bookkeeping
structure such as next address table, read HB, and write HB,
required for the trace buffer reuse. There is an area saving of
7% for AugVC compared to Baseline8. The ODVC scheme
reduced the critical path by 30%, area by 32.4% and total
power by 17.8% compared to Baseline5, primarily because of
the reduction in VC count and arbiter cardinality. The static
power of the trace buffer controller is smaller for ODVC

compared to AugVC, because of a reduction in VC count
which further reduces the number of bookkeeping structures
such as head pointers and tail pointers.

The dynamic power overheads for four different synthetic
traffics are shown in Figure 10. The results are normalized
to the total power of Baseline5. There is no dynamic power
observed for the trace buffer and its controller for Baseline5
and Baseline8 as the validation structures are power gated
in-field in conventional router architectures. The additional
dynamic power in AugVC compared to Baseline5 is mostly
due to the accesses to the trace buffer when there is no space
available in private VCs. We observed less switching activity
at the trace buffer with the use of write holding buffer as all
the write accesses are not directed to the trace buffer.

The changes proposed in Section IV-A impact only the
writing in the VCs. Even though this lengthens the path delay,
this does not impact the clock period because it remains within
the slack provided by the slower arbiters. Therefore, we do not
observe any cycle time overhead for AugVC, as no changes
are made to VC allocation and switch allocation stages.

VI. CONCLUSION AND FUTURE WORK

As network-on-chip performance is directly related to router
buffer configuration, the buffer architecture plays an important
role in designing low cost, high performance, and energy
efficient on-chip networks. In this paper, we proposed and
evaluated an approach to reuse trace buffers to augment router

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907909, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

(a) Uniform Traffic (b) Transpose Traffic

(c) Tornado Traffic (d) Neighbor Traffic

Fig. 9: Average packet latency (normalized to ODVC) variation of VOQ scheme under four synthetic traffics for different VC
sizes (4, 5, 6, 7 and 8 flits per VC and packet size = 100 flits)

Fig. 10: Normalized dynamic power (normalized to total
power of Baseline5) under four synthetic traffics (injection
rates = 0.24 for uniform, tornado and neighbor; 0.14 for
transpose, packet size = 100 flits)).

buffers, which improves the overall NoC performance. The
trace buffer is reused as a backup storage for the flits that
cannot be accommodated in the private VCs. Reusing design-
for-debug structures enables us to allocate more space for
on-chip debug hardware, resulting in better validation. The
AugVC simulation results using a cycle accurate simulator
indicate latency reductions by up to 38.25%. We also proposed
a scheme ODVC that uses a modified VC assignment where
the VCs are assigned on the basis of the designated output
port of the packet, resulting in significant reduction of the

clock period and area of the router by 30% and 32.4%
respectively. Our proposed architecture may lead to effects on
the cache coherence handling mechanism that require further
investigation. This is an area of future research. We also plan
to investigate ways to decrease the bookkeeping overhead for
the trace buffer reuse.

VII. ACKNOWLEDGMENT

This research was partially supported by research grant
2014-TJ-2528 from Freescale Semiconductor and Semicon-
ductor Research Corporation.

REFERENCES

[1] B. Vermeulen and K. Goossens, “A network-on-chip monitoring infras-
tructure for communication-centric debug of embedded multi-processor
socs,” in VLSI Design, Automation and Test, 2009. VLSI-DAT’09.
International Symposium on. IEEE, 2009, pp. 183–186.

[2] Y. Xu, B. Zhao, Y. Zhang, and J. Yang, “Simple virtual channel
allocation for high throughput and high frequency on-chip routers,”
in High Performance Computer Architecture (HPCA), 2010 IEEE 16th
International Symposium on. IEEE, 2010, pp. 1–11.

[3] W. J. Dally, “Virtual-channel flow control,” IEEE Transactions on
Parallel and Distributed systems (TPDS), vol. 3, no. 2, pp. 194–205,
1992.

[4] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Oberg,
K. Tiensyrja, and A. Hemani, “A network on chip architecture and design
methodology,” in VLSI, 2002 (ISVLSI). Proceedings. IEEE Computer
Society Annual Symposium on. IEEE, 2002, pp. 117–124.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907909, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Fig. 11: Impact of varying trace buffer latencies and read holding buffer sizes.

Fig. 12: Minimum, maximum and variance values of packet latencies for PARSEC abd SPLASH2 benchmarks .

[5] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-GHz
mesh interconnect for teraflops processor,” IEEE Micro, vol. 27, no. 5,
pp. 51–61, 2007.

[6] J. Hu and R. Marculescu, “Application-specific buffer space alloca-
tion for networks-on-chip router design,” in Proceedings of the 2004
IEEE/ACM International conference on Computer-aided design (IC-
CAD). IEEE Computer Society, 2004, pp. 354–361.

[7] H. Wang, L.-S. Peh, and S. Malik, “Power-driven design of router
microarchitectures in on-chip networks,” in Proceedings of the 36th an-
nual IEEE/ACM International Symposium on Microarchitecture. IEEE
Computer Society, 2003, p. 105.

[8] T. T. Ye, L. Benini, and G. De Micheli, “Analysis of power consumption
on switch fabrics in network routers,” in Design Automation Conference,
2002. Proceedings. 39th (DAC). IEEE, 2002, pp. 524–529.

[9] S. Tang and Q. Xu, “A multi-core debug platform for NoC-based
systems,” in Design, Automation & Test in Europe Conference &
Exhibition, 2007. DATE’07. IEEE, 2007, pp. 1–6.

[10] M. Galles, “Spider: A high-speed network interconnect,” IEEE Micro,
vol. 17, no. 1, pp. 34–39, 1997.

[11] K. Rahmani, S. Ray, and P. Mishra, “Postsilicon trace signal selection
using machine learning techniques,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 25, no. 2, pp. 570–580, 2017.
[12] P. Taatizadeh and N. Nicolici, “Emulation infrastructure for the evalua-

tion of hardware assertions for post-silicon validation,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 6,
pp. 1866–1880, 2017.

[13] K. Goossens, B. Vermeulen, and A. B. Nejad, “A high-level debug
environment for communication-centric debug,” in Proceedings of the
Conference on Design, Automation and Test in Europe (DATE). Euro-
pean Design and Automation Association, 2009, pp. 202–207.

[14] C. Ciordas, K. Goossens, T. Basten, A. Radulescu, and A. Boon,
“Transaction monitoring in networks on chip: The on-chip run-time per-
spective,” in Industrial Embedded Systems, 2006. IES’06. International
Symposium on. IEEE, 2006, pp. 1–10.

[15] C. Ciordas, T. Basten, A. Radulescu, K. Goossens, and J. Meerbergen,
“An event-based network-on-chip monitoring service,” in High-Level
Design Validation and Test Workshop (HLDVT), 2004. Ninth IEEE
International. IEEE, 2004, pp. 149–154.

[16] A. M. Gharehbaghi and M. Fujita, “Transaction-based debugging of
system-on-chips with patterns,” in Computer Design, 2009. ICCD 2009.
IEEE International Conference on. IEEE, 2009, pp. 186–192.

[17] M. Dehbashi and G. Fey, “Transaction-based online debug for NoC-

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907909, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

based multiprocessor SoCs,” Microprocessors and Microsystems, vol. 39,
no. 3, pp. 157–166, 2015.

[18] A. Ghofrani, R. Parikh, S. Shamshiri, A. DeOrio, K.-T. Cheng, and
V. Bertacco, “Comprehensive online defect diagnosis in on-chip net-
works,” in VTS. IEEE, 2012, pp. 44–49.

[19] R. Abdel-Khalek and V. Bertacco, “Functional post-silicon diagnosis and
debug for networks-on-chip,” in ICCAD. ACM, 2012, pp. 557–563.

[20] R. Abdel-Khalek and V. Bertacco, “Correct runtime operation for NoCs
through adaptive-region protection,” in Design, Automation & Test in
Europe (DATE), 2016. IEEE, 2016, pp. 1189–1194.

[21] R. Abdel-Khalek and V. Bertacco, “Diamond: Distributed alteration of
messages for on-chip network debug,” in NoCS. IEEE, 2014, pp. 127–
134.

[22] M. Rezazad and H. Sarbazi-Azad, “The effect of virtual channel orga-
nization on the performance of interconnection networks,” in Parallel
and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE
International. IEEE, 2005, pp. 8–pp.

[23] T.-C. Huang, U. Y. Ogras, and R. Marculescu, “Virtual channels planning
for networks-on-chip,” in Quality Electronic Design, 2007. ISQED’07.
8th International Symposium on. IEEE, 2007, pp. 879–884.

[24] H. Kim, C. Kim, M. Kim, K. Won, and J. Kim, “Extending bufferless
on-chip networks to high-throughput workloads,” in Networks-on-Chip
(NoCS), 2014 Eighth IEEE/ACM International Symposium on. IEEE,
2014, pp. 9–16.

[25] X. Xiang, W. Shi, S. Ghose, L. Peng, O. Mutlu, and N.-F. Tzeng,
“Carpool: a bufferless on-chip network supporting adaptive multicast
and hotspot alleviation,” in Proceedings of the International Conference
on Supercomputing. ACM, 2017, p. 19.

[26] X.-Y. Xiang and N.-F. Tzeng, “Deflection containment for bufferless
network-on-chips,” in Parallel and Distributed Processing Symposium,
2016 IEEE International (IPDPS). IEEE, 2016, pp. 113–122.

[27] C. A. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M. S. Yousif, and
C. R. Das, “ViChaR: A dynamic virtual channel regulator for network-
on-chip routers,” in Microarchitecture, 2006. MICRO-39. 39th Annual
IEEE/ACM International Symposium on. IEEE, 2006, pp. 333–346.

[28] H. Zhang, K. Wang, Y. Dai, and L. Liu, “A multi-VC dynamically shared
buffer with prefetch for network on chip,” in Networking, Architecture
and Storage (NAS), 2012 IEEE 7th International Conference on. IEEE,
2012, pp. 320–327.

[29] A. T. Tran and B. M. Baas, “Achieving high-performance on-chip
networks with shared-buffer routers,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 22, no. 6, pp. 1391–1403, 2014.

[30] R. Grindley, T. Abdelrahman, S. Brown, S. Caranci, D. DeVries,
B. Gamsa, A. Grbic, M. Gusat, R. Ho, O. Krieger et al., “The
numachine multiprocessor,” in Parallel Processing, 2000. Proceedings.
2000 International Conference on. IEEE, 2000, pp. 487–496.

[31] F. Alazemi, A. AziziMazreah, B. Bose, and L. Chen, “Routerless
network-on-chip,” in High Performance Computer Architecture (HPCA),
2018 IEEE International Symposium on. IEEE, 2018, pp. 492–503.

[32] M. J. Karol, K. Y. Eng, and H. Obara, “Improving the performance of
input-queued atm packet switches,” in INFOCOM’92. Eleventh Annual
Joint Conference of the IEEE Computer and Communications Societies,
IEEE. IEEE, 1992, pp. 110–115.

[33] S. A. R. Jafri, H. B. Sohail, M. Thottethodi, and T. Vijaykumar, “apslip:
A high-performance adaptive-effort pipelined switch allocator,” 2013.

[34] C. Li, D. Dong, X. Liao, J. Wu, and F. Lei, “Rob-router: Low latency
network-on-chip router microarchitecture using reorder buffer,” in High-
Performance Interconnects (HOTI), 2016 IEEE 24th Annual Symposium
on. IEEE, 2016, pp. 68–75.

[35] S. Han, K. Kang, and J. Ryu, “Determination of delay bound over
multi-hop real-time switches with virtual output queuing,” in Advanced
Information Networking and Applications (AINA), 2014 IEEE 28th
International Conference on. IEEE, 2014, pp. 892–898.

[36] Y.-H. Kao, N. Alfaraj, M. Yang, and H. J. Chao, “Design of high-radix
clos network-on-chip,” in Proceedings of the 2010 Fourth ACM/IEEE
International Symposium on Networks-on-Chip. IEEE Computer Soci-
ety, 2010, pp. 181–188.

[37] A. Basak, S. Bhunia, and S. Ray, “Exploiting design-for-debug for
flexible SoC security architecture,” in Proceedings of the 53rd Annual
Design Automation Conference (DAC). ACM, 2016, p. 167.

[38] N. Jindal, P. R. Panda, and S. R. Sarangi, “Reusing trace buffers
to enhance cache performance,” in Proceedings of the Conference on
Design, Automation & Test in Europe (DATE). European Design and
Automation Association, 2017, pp. 572–577.

[39] N. Jindal, P. R. Panda, and S. R. Sarangi, “Reusing trace buffers as
victim caches,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 2018.

[40] T. Moscibroda and O. Mutlu, “A case for bufferless routing in on-chip
networks,” in ACM SIGARCH Computer Architecture News, vol. 37,
no. 3. ACM, 2009, pp. 196–207.

[41] N. Jiang, J. Balfour, D. U. Becker, B. Towles, W. J. Dally, G. Michelo-
giannakis, and J. Kim, “A detailed and flexible cycle-accurate network-
on-chip simulator,” in Performance Analysis of Systems and Software
(ISPASS), International Symposium on. IEEE, 2013, pp. 86–96.

[42] M. Badr and N. E. Jerger, “Synfull: Synthetic traffic models capturing
a full range of cache coherent behaviour,” in in ISCA. Citeseer, 2014.

[43] D. U. Becker, “Efficient microarchitecture for network-on-chip routers,”
Ph.D. dissertation, Stanford University, 2012.

Neetu Jindal is a research scholar in the Department
of Computer Science and Engineering at Indian
Institute of Technology, Delhi. She received her
Bachelors’ degree in Computer Science and Engi-
neering from Kurukshetra University. Her research
interests include post-silicon validation methodolo-
gies, architectural design-space exploration and ma-
chine learning applications to computer architecture
optimizations.

Shubhani Gupta received the B.Tech. degree in
electronics and communication engineering from
NIT Kurukshetra. She has more than 7 years of
design experience in companies including Bharat
Electronics Ltd. and Samsung Research Institute.
She is currently a Research Scholar with the School
of IT at IIT Delhi. Her research interests include
high level synthesis and system-on-chip architec-
tures.
Divya Praneetha Ravipati is pursuing her PhD at
Indian Institute of Technology Delhi. Prior to joining
as Research Scholar, she worked as a System Design
Engineer in Kasura Technologies Private Limited for
2 years and as an Assistant Professor in Vignan
University for an year. Her research interests include
embedded systems and digital design.

Preeti Ranjan Panda received his B. Tech. degree
in Computer Science and Engineering from the IIT
Madras and his M. S. and Ph.D. degrees from the
University of California at Irvine. He is currently a
Professor in the Department of Computer Science
and Engineering at IIT Delhi. He has previously
worked at Texas Instruments and Synopsys, and
has been a visiting scholar at Stanford University.
His research interests include Embedded Systems
and Design Automation. He is the author of two
books: Memory issues in Embedded Systems-on-

chip: Optimizations and Exploration and Power-efficient System Design. He
is a recipient of an IBM Faculty Award and a Department of Science and
Technology Young Scientist Award. Prof. Panda has served on the editorial
boards of IEEE TCAD, ACM TODAES, IEEE ESL, and IJPP, and as
Technical Program co-Chair of CODES+ISSS and VLSI Design. He has also
served on the technical program committees and chaired sessions at several
conferences including DAC, ICCAD, DATE, CODES+ISSS, ISLPED, and
EMSOFT.

Smruti R. Sarangi received his B.Tech degree in
Computer Science from IIT Kharagpur and the MS
and Ph.D degrees from the University of Illinois,
Urbana-Champaign. Currently, he is an Usha Hasteer
Chair Professor in the Computer Science and Engi-
neering Department at IIT Delhi. He holds a joint
appointment with the Department of Electrical Engi-
neering and the School of Information Technology.
His research interests include processor reliability,
architectural support for operating systems, and pro-
cessors for the internet of things. He has published

extensively in peer reviewed conferences and journals, holds 5 US patents,
and has filed 3 Indian patents. He is the author of the popular undergrad-
uate textbook on computer architecture titled, “Computer Organisation and
Architecture”, published by McGrawHill. He is a member of the IEEE and
ACM.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907909, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

(a) 4× 4 network

(b) 8× 8 network

(c) 16× 16 network

Fig. 13: Normalized average packet latency (normalised to Baseline5) for PARSEC and SPLASH2 benchmarks for three
network sizes.

